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general, however, the agreement between the present 
data and major features of the Lomer model is quite 
satisfying. 

High-frequency magnetoacoustic data have been 
obtained for very pure tungsten. From the observed 
oscillatory behavior, the extremal dimensions of the 
Fermi surface have been obtained. The resulting shape 
of the Fermi surface is in qualitative agreement with the 
theoretical model of Lomer. Estimates of the extremal 

I. INTRODUCTION 

SEVERAL years ago, Hartmann and Hahn1 made a 
brilliant suggestion for a new type of double 

resonance which promised to provide greatly increased 
sensitivity in the detection of otherwise weak reso
nances. The technique enables one to use the strong 
resonance of one spin system to detect the weak 
resonance of a second one. If two nuclear species of 
spin / and S and gyromagnetic ratios yi and ys were 
simultaneously present, acted on by rotating fields 
(Hi) i and (Hi)s tuned to the respective resonances, 
Hartmann and Hahn's double resonance occurred when 

7 i ( # i ) r = Y * ( # i ) s . (1) 

They showed that when this condition was satisfied, the 
two spin systems were strongly coupled even though 
the precession frequencies in the static field Ho were 
at widely different frequencies. The coupling occurs 
via the dipolar interaction between the / and S spins. 
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1 S. R. Hartmann and E. L. Hahn, Bull. Am. Phys. Soc. 5, 498 
(1960). 

areas along certain symmetry directions are in reason
able accord with those found from high-field de Haas-
van Alphen data. 

Thanks are due to H. Sell of the Westinghouse Lamp 
Division, Bloomfield, New Jersey for providing the 
high-purity samples of tungsten used in this work. 
The author would like to express his appreciation to 
R. Farich for his great care in grinding and polishing 
the acoustic specimens. 

Crudely speaking, we may say the precession of the 5 
spins about their Hi causes the component of the dipolar 
field along the direction of the static field HQ to oscillate 
at an angular frequency ys(Hi)s. When the Hahn 
condition is satisfied, the frequency of alternation is 
just such as to induce transitions of the / spins relative 
to their rotating field (ZZi)r. Hahn showed that fairly 
rapid phase changes of the alternating field (Hi)s 
would, through this coupling, produce a saturation of 
the / spins. In this way, even though the S resonance 
might be hard to observe directly, it could be seen 
indirectly by its effect on the / spins. Exactly how the 
method works has been explained in full detail by 
Hartmann and Hahn.2 However, the analysis is 
necessarily rather formidable and cannot, in fact, be 
carried through completely since an inherent feature 
of their theory is a calculation of a cross-relaxation time 
between the two species. In their paper, they also 
describe the exact sequence of pulses necessary to 
bring about the double resonance, and they demon
strate the effect. 

In our paper, we describe a modification of Hartmann 
and Hahn's experiment.3 Our modifications bring about 
important simplifications in the experimental technique 

2 S. R. Hartmann and E. L. Hahn, Phys. Rev. 128, 2042 (1962). 
8 F. M. Lurie and C. P. Slichter, Phys. Rev. Letters 10, 403 

(1963). 
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A magnetic double resonance technique is described which allows the strong resonance of one nuclear 
species to be used to detect the much weaker resonance of a second species. Based on the proposal 
of Hartmann and Hahn, the new technique is experimentally simpler, and involves no critical adjustments 
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resonance of the 7.4% abundant Li6 at 5.679 Mc/sec. 
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and make the theoretical analysis not only simpler but, 
in fact, capable of exact solution. 

As will become apparent, the two different techniques 
have simple analogies in thermodynamics. Consider 
two bodies connected by a rod to provide thermal 
contact. One body, of small heat capacity, represents 
the low abundance S spins, the other of large heat 
capacity, represents the / spins. Hartmann and Harm's 
experiments are analogous to heating the large object 
by holding the small one at constant elevated tempera
ture. The rate of heating depends on the thermal 
conductivity of the rod, and the heat capacity of the 
large object (the /-spin system), but is independent of 
the heat capacity of the small object (the S-spin 
system) since we never let its temperature change. A 
theoretical prediction of the rate of heating of the large 
object would require knowledge of its heat capacity 
and of the thermal conductivity of the rod. In reso
nance language, that means we must calculate a cross-
relaxation time. This cannot be done exactly. 

Our experiment is analogous to breaking the thermal 
contact between the rod and the small object, heating 
the small object to a known temperature, disconnecting 
the heater, and reconnecting the rod. After a suffi
ciently long time, the entire system of large object, 
small object, and rod, come to a common temperature. 
Since the S system has a relatively small heat capacity, 
the final temperature is not much different from the 
initial temperature of the large object. However, we 
can repeat the cycle. In fact, if we do the thermal 
mixing N times, the heating of the / system is as great 
as it would be for a single mixing with an S system 
whose heat capacity is N times larger than it actually 
is. Since N may be made very large, a significant effect 
can be achieved even when the S spins have a very 
small relative heat capacity. 

Calculation of the temperature rise requires knowl
edge only of the heat capacities of the parts. It is not 
even necessary for the heat capacity of the rod to be 
small since we can easily include its effect. Calculation 
of the heat capacities of the spin systems is simple and 
can be done exactly. We therefore have a simple, exact 
theory to compare with experiment. 

As we shall see (and as Hahn and Hartmann's 
analysis shows), the effective thermal conductivity of 
the rod depends on the size of the two rotating fields. 
The Hahn condition provides the fastest mixing or 
largest thermal conductivity. The heat capacity of the 
two systems is determined in large measure by the 
strength of the Hi's. We can therefore vary the heat 
capacities experimentally although we must remember 
that when the Hi ratio does not satisfy the Hahn 
condition, it may take a longer time for a uniform 
temperature to be reached. The dipolar coupling 
between the two different species provides the thermal 
contact or "rod." As we have remarked, we can easily 
calculate its heat capacity. Likewise, there is a contri

bution to the heat capacity from the dipolar coupling 
of the / spins among themselves and the S spins among 
themselves. All these effects can be rigorously and 
simply included. In the process, we shall demonstrate 
that it is not necessary for the J9Vs to be large compared 
to the local fields and we even demonstrate the coupling 
in cases where (Hi)i has been turned to zero. 

It will come as no surprise to the reader that the 
analysis we have just given is based on Redfield's4 

concept of a spin temperature in the rotating reference 
frame. In our experiments, the concept is applied to 
two rotating frames simultaneously. Although such a 
procedure may sound formidable, the formal mathe
matics is quite simple. 

Our experiments were performed on lithium metal. 
The / system was the 92.6% abundant isotope Li7 

whose strong resonance we observed directly. The S 
spins were the 7.4% abundant isotope Li6. Since both 
resonances have been thoroughly studied in metallic 
lithium by Holcomb and Norberg,6 we learn nothing 
new about either the nuclei or the metal. However, such 
a well-understood system is ideal for a test of the double 
resonance theory. We performed some measurements 
at liquid nitrogen temperature, but the bulk of the 
data was obtained at 1.5 °K where the long nuclear 
relaxation times (30 sec for Li7 and longer for Li6) make 
it simple to obtain isolation from the influence of the 
lattice for the duration of the experiment. A magnetic 
field of 9062 G was used for all experiments. 

The basic experiments on which this work is based are 
those in which Redfield discovered the need for the 
concept of spin temperature in the rotating reference 
frame. Shortly thereafter, Bloembergen and Sorokin6 

performed double resonance experiments, demon
strating what they called the transverse Overhauser 
effect in which the resonance of one nuclear species 
polarized the nuclei of a second species. They also 
showed how the spin-lattice relaxation of one species 
affected the transverse relaxation time T% of a second 
species. Goldman and Landesman7 demonstrated spin 
mixing between two species under the influence of an 
alternating field when one species had a large quad-
rupole splitting. Hahn1 proposed his double resonance 
technique, which he and Hartmann8 have subsequently 
verified in detail. Further single resonance experiments 
by Goldburg,9 Slichter and Holton,10 and more recently 
Hartmann and Anderson; Holcomb, Pedersen, and 
Sliker; and Solomon and Ezratty11 have studied further 

4 A. G. Redfield, Phys. Rev. 98, 1787 (1955). 
6 D . F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074 

(1955). 
6 N. Bloembergen and P. Sorokin, Phys. Rev. 110, 865 (1958). 
7 M . Goldman and M. Landesman, Compt. Rend. 252, 263 

(1961). 
8 S. R. Hartmann and E. L. Hahn, Phys. Rev. 128, 2042 (1962). 
9 Walter I. Goldburg, Phys. Rev. 122, 831 (1961); also 128, 

1554 (1962). 
10 C. P. Slichter and W. C. Holton, Phys. Rev. 122,1701 (1961). 
11 A. G. Anderson and S. R. Hartmann, Phys. Rev. 128, 2023 

(1962); I. Solomon and J. Ezratty, ibid. 121, 78 (1962); D. F. 
Holcomb, B. Pedersen, andT. Sliker, ibid. 123,1951 (1961). 
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aspects of the spin temperature concept. Redfield and 
Provotorov12 have made further theoretical studies. 

Recently, Redfield13 has successfully applied the Hahn 
double resonance method to study quadrupole splittings, 
using a field cycling technique. I t was interest in 
Redfield's experiments that stimulated us to undertake 
the work described in this paper. 

In Sec. I I , we outline our basic experimental pro
cedure. In Sec. I l l , we develop the theoretical analysis. 
We give the details of the apparatus in Sec. IV, and the 
experimental results in Sec. V. We present an approxi
mate calculation of the cross-relaxation time in the 
Appendix. 

II. EXPERIMENTAL PROCEDURE 

The theoretical analysis of our experiment is simplest 
if we have before us an outline of the various steps in 
the experiment. In this section, we give such an outline. 

We start with the static field Ho at a value #00. The 
two rotating fields, when turned on, are adjusted to 
rotate at frequencies on and us given, respectively, by 

Yi#oo=coi, 

ysHoo—o)s7 

that is, the two nuclear species are simultaneously at 
resonance when Ho=Hoo. 

We start at / = 0 , with the two nuclear spin systems 
magnetized to thermal equilibrium at the lattice 
temperature, their magnetization vectors pointing along 
Ho and with the two Hi's zero. Our first step involves 
turning on (Hi)i in such a manner that M j is brought 
to point along (#1)1 in the I system rotating reference 
frame. This frame, of course, is the one which, relative 
to the laboratory, rotates about the # 0 axis at fre
quency c*)j in the same sense as the nuclear precession 
of the / spins. If we simply turned on (#1)1, we would 
fail in our objective since, as shown in Ref. 10, Mj would 
precess around it in the rotating frame, always remain
ing perpendicular and decaying in amplitude in a few 
hundred microseconds £(T2)i, the T2 of the / spins]. In 
order to get Mj parallel to (#1)1, we therefore first 
displace Ho from HQO by an amount hoS>(Hi)i. Then 
(Hi) 1 is turned on. The effective field of the i" spins 
(Heff)i is then14 

(H„f f)i=i(J70i+kA0 , (3) 

where i and k are unit vectors along the directions of 
(Hi) 1 and Ho, respectively. Since ho2>(Hi)i, M/ is 
essentially parallel to (Heff)j. 

ho is now slowly decreased to zero. By slowly, we 
mean taking a time of about 30 msec, which is quite 

12 B. N. Provotorov, Zh. Eksperim. i Teor. Fiz. 41,1582 (1961) 
[translation: Soviet Phys.—JETP 14, 1126 (1962)]; and A. G. 
Redfield, Phys. Rev. 128, 2251 (1962). 

13 A. G. Redfield, Phys. Rev. 130, 589 (1963).# 
14 See, for example, C. P. Slichter, in Principles of Magnetic 

Resonance (Harper and Row Publishers, New York, 1963). 

long compared to the precession period of the / spins 
in the field (#1)1. During such a slow variation M j 
remains parallel to (Heff)j, so that when ho has returned 
to zero Mj is parallel to (Hi) j . If (Hi)i is large compared 
to a magnetic field HL which we call the "local field" 
and shall define in Sec. I l l , we shall see that Mj will be 
equal to the thermal equilibrium value (Mi)o given by 
the relation 

Niyi
2h2I(I+l) 

(MT)0 = : Ho 
3keL 

= CiH0/dLy (4) 

where Ni is the number of / spins per unit volume, 6L is 
the lattice temperature, k is Boltzmann's constant, and 
Ci is the Curie constant of the / spins. 

If (Hi) 1 is comparable to or less than HL, M J is less 
than (Mi)o, as shown in Ref. 10. However, the decrease 
below (Mi)o is a reversible one. Moreover, no further 
decrease will take place except via the slow spin-lattice 
coupling. This relaxation time, Redfield's T2ey is much 
longer than ( r 2 ) j , being in fact 30 sec for Li7 at 1.5°K. 

As has been emphasized in Ref. 10, the technique 
of bringing Mj parallel to (Hi) j may be thought of as an 
adiabatic demagnetization in the / spin rotating 
reference frame. 

We are now ready to turn on the second rotating 
field (Hi)s- This we do, holding it on for a time ton* 
Since (Hi)s is turned on quickly compared to the 
precession period of Ms about (Hi)s, and since H0=H00, 
Ms is perpendicular to (Hi)s* I t remains so, precessing 
about (Hi)s in the rotating frame, and decaying to zero 
in a time (T2)s, typically a few hundred microseconds.10 

The S spins are now at an infinite spin temperature in 
their rotating reference frame. By means of the dipolar 
coupling between the I and S spins, the entire system 
of / and S spins now comes to a common spin tempera
ture. This involves a decrease in Mj since the / spins 
have been heated by their contact with the S spins. By 
the same token, the S spins have been cooled. They, 
therefore, acquire magnetization parallel to their effec
tive field, hence, along (Hi)s. After the time ton, (Hi)s 
is turned abruptly to zero. In the absence of (Hi)s, Ms 
decays to zero in the time (r2),s.10 As we shall see, 
nothing happens to the / magnetization during this 
decay. After a time t0a, (Hi)s is once again turned on, 
the whole cycle being repeated until it has been per
formed N times. 

Following the iVth cycle, we wish to observe the 
extent that M j has been diminished. Accordingly, 
(Hi) 1 is switched abruptly to zero, and the free induc
tion decay of the / spins is observed photographically 
on an oscilloscope. The amplitude of the induction decay 
immediately after the turn-off of (#1)7 is a measure 
of M r . 

The experimental technique described above differs 
in two ways from that of Hahn and Hartmann. The 
first difference is the manner in which Mj is brought 
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parallel to (Jfi)j. Hahn and Hartmann apply a 90° 
pulse. This puts Mj perpendicular to both (Hi)i and 
Ho, In order to get Mj along (ili)r, they then shift the 
phase of Cffi)iby90°. 

The second difference in their technique involves the 
other alternating field (Hi)s. Instead of pulsing it off 
and on, they turn it on at fixed amplitude, but periodic
ally shift its phase by 180°. They do this at a rate 
sufficiently fast compared to the cross-relaxation time 
between the 5 and /spins so that the 5 spins are unable 
to achieve magnetization parallel to (Hx)s. In this 
manner they hold the S spins at an effectively infinite 
temperature. This technique, though experimentally 
somewhat more involved than simply turning (Hi)s 
on and off, has the advantage of giving the maximum 
rate of heating. As we have remarked, their theoretical 
analysis is analogous to that of the flow of heat to an 
object via a rod connected to a reservoir of fixed tem
perature. (Of course, holding the 5 spins at a fixed spin 
temperature is not an essential feature of Hahn and 
Hartmann's method. However, the bulk of their 
theoretical analysis using the density matrix is based on 
this assumption.) 

III. THEORETICAL ANALYSIS 

A. Basic Equations 

In this section, we derive the basic theoretical 
expressions needed to analyze our experiment. We 
start by writing the Hamiltonian of the system in the 
laboratory frame. 

3C=mZi(t)+Wzs(t)+ (Wa)ii+ (Wd)ss+ (Wths, (5) 

where 3Czi(t) is the Zeeman energy of the I spins. It 
includes both a static interaction with field Hok and a 
time-dependent interaction to the two alternating fields. 
I t is most convenient to consider that rotating fields 
have been applied, instead of linearly polarized alter
nating fields. We have, then 

3Czz(/) = -ythhCkHo+i(£Ti)j cosOi/+j(#i)r sinQjt 
+i(H1)s cosQst+j (Hi) s sinfts*], (6) 

where Qj and Qs may be positive or negative, to repre
sent either sense of rotation, and where 

I=EIy (6a) 
3 

is the total spin vector of the I spins. 
The terms (3Cd)is, etc., represent the magnetic 

dipolar coupling of the I spins with the S spins, and so 
forth. 

We now wish to transform to a rotating reference 
system. In so doing, we are following Redfield.4 How
ever, our problem is somewhat different from his since 
we have two rotating fields. We therefore wish to 
transform in such a way that we view the I spins and 
S spins in their respective reference frames. This is 

readily accomplished14 by introducing the unitary 
operator T defined as 

T = exp (iQiIzt) exp (iQsSzt), (7) 
where 

J- z Z-< •*• zj f 

J 

Sz^lilSzk, (8) 
h 

are the total % components of angular momentum of 
the two spin species. 

We define a new wave function # / by the equation 

^ ' = 1 ^ . (9a) 

Then substituting T^r for ^ , Schrodinger's equation 
becomes 

= 3C'^', (9b) 
i St 

where 30/ is a transformed Hamiltonian. 
Explicit evaluation of 3C' using standard techniques14 

gives 

3C'= -7i*C(ffo+Oi/Ti)/2+ (SthI J 
-~ysKHo+2s/ys)Sz+ (F0*S J 
+Wdn

0+3Cdis
0+md8s

Q 

+time-dependent terms we ignore. (10) 

The terms 0Cdn°, etc., represent that part of the dipolar 
coupling 5Cdn that commutes with the Zeeman inter
action between the spins and the static laboratory field, 
UQ. These terms are usually called the "secular part" of 
the dipolar interaction. We write them out explicitly 
below. 

The time-dependent terms are of two sorts. One 
variety arises from the nonsecular parts of the dipolar 
coupling. They oscillate at frequencies Or, 0^, or 
(OjiQs). The second sort arises from couplings of 
the / spins to (Hi)s and the S spins to (ffi)r. These 
oscillate at a frequency (Oj—0^). Since Oj, 0$, and 
(OjdbOs) are all far from any of the energy level 
spacings in the rotating frame, they can be neglected. 
One must remember, however, that it is conceivable 
that should there be a quadrupolar interaction added, 
and should the two nuclei have similar y's (as do, for 
example, Cu63 and Cu65), the frequency (Qj—Os) might, 
in fact, be close to a possible transition. 

If one chooses 

Qi=-yiHm) . 

Q8=—y8Hoof 

the two nuclei are exactly at resonance. Note that the 
two C's are negative if the y's are positive, representing 
the fact that nuclei of positive y rotate in the "negative" 
sense about HQ. Making use of Eq. (11), recalling that 
Ho~-HQo=hoy and neglecting the time-dependent terms 
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of 3C', we have 

3C'= -yifilhoIz+ (Hl)IIx-]-ysh[h^z+ (ffi)*Sj 
+3Cdii0+Wdis°+3Cdss0- (12) 

It is convenient to define the Zeeman energies 3Zzi and 
3Czs by the equations 

3Czr= -yiti[hoIz+ (HfrlJ, etc. (13) 

The dipolar terms are 

yi2h2 1—3 cos20jk 
Wdii°= E (3/.i/.*-IyIib) 

( l-3cos2M 
Wdi£=yrYafP E I,kT,9 (14) 

k,p rkp* 

and similarly for 3Cdss°- To these may be added the 
pseudodipolar and pseudoexchange couplings where 
their size is large enough to be important. 

It is the term 3Cdis° which gives rise to the effects 
observed by Bloembergen and Sorokin6 in their studies 
of CsBr. They found that the rapid bromine spin-lattice 
relaxation could communicate itself to the Cs nuclei 
through this term when the Cs nuclei were quantized 
along their own Hi. 

We can view the various terms of Eq. (12) as energy 
reservoirs of Zeeman or dipolar energy. Since the various 
terms do not commute, they can exchange energy. 
Such processes may be termed cross relaxation in the 
double-rotating reference frame. The rate of cross 
relaxation will depend on how the energy levels of the 
different terms match, on the heat capacities, and on the 
strength of coupling as measured by the failure of terms 
to commute with one another. Thus, we note that the 
Zeeman term of the / spins 5Czi commutes with the 
Zeeman energy of the S spins, 3Czs* However, as long as 
(#1)1^0, 5Czi does not commute with either 3Cdii° or 
5CdJs°. We can, therefore, transfer energy between 3Czi 
and 5Cdu° or 3Cdis°. Moreover, 3Cdis° provides a coupling 
mechanism to transfer energy between 3Czi and 3Czs 
[provided ( # 1 ) ^ 0 ] . 

All these remarks lead one, following Redfield, to 
assume that if one waits long enough, the various parts 
of Eq. (12) will come to an equilibrium in which the 
system can be described by a common temperature 0. 
For some purposes, it may also be possible and con
venient to assume that various parts may come to 
common temperatures faster than the whole system 
achieves a single temperature. This is the viewpoint 
we adopt in the Appendix to calculate some cross-
relaxation times. 

We, therefore, make the assumption that when the 
system has achieved a common temperature it is 
described by a density matrix p given as 

exp(-oey«) 
P= , (15) 

Trexp(-3C'/£0) 

where 3C' is given by Eq. (12). In terms of p we can 
calculate the average energy E and the average magneti
zation vector (Mi) in the high temperature ap
proximation 

E=TiQacf) 

CIl(H1)I
2+ho2+HL

2-]+CsL(H1)s
2+h0^ 

= , (16a) 
e 

(MI)=Tr(p7iM) 

Cl(H eff) l 
= , (16b) 

0 

where Ci and Cs are the Curie constants given in terms 
of the number of / or 5 spins per unit volume, Nj or Ns 
and Boltzmann's constant k by 

yi2h2I(I+l)Ni 
Ci= , etc., (17) 

3k 

and where HL2 is defined by the equation 

C1H1? 
=TTp(Wdii0+Wdis°+Wdss0). (18) 

e 

Evaluating the trace gives 

HL
2=±(A2H)II+(AW)IS 

ly s2NsS(S+l) 
+ (A2H)ss, (19) 

3 7 i W ( / + l ) 
where (A2H)ap is the contribution (in gauss) of the /3 
spins to the second moment of the a-spin resonance 
line. (Incorrect expressions for Hi? have been given in 
both Refs. 4 and 10.) HL has the dimensions of a 
magnetic field. Although we call it the "local field," it 
should not be confused with the Lorentz local field. 
Actually, HL is introduced simply to enable us to factor 
Ci out of various equations. The fact that the dipolar 
energy is £—CIHL2/B~\ makes it appear superficially 
that we have taken into account only the / spins in 
calculating the dipolar energy. However, that such is 
not the case is seen by examining Eqs. (18) and (19) 
which exhibit explicitly the dipolar contribution of the 
S species to the expression for HL* CIHL2 measures the 
total dipolar contribution to the spin specific heat. Note 
that although the term "local field" sounds vague, that 
HL can in fact be calculated exactly and is to be con
sidered throughout as a precisely predicted quantity. 
The only exception to this statement is found when 
pseudodipolar coupling becomes prominent as in higher 
atomic number elements. 

It is (Mj) which we observe from our oscilloscope 
photographs of the initial height of the free induction 
decay following turn-off of (ETi)r. 
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One further expression is needed. It is the expression 
obtained from Ref. 10, for the magnetization Mj found 
after the demagnetization of Ps. That is, suppose 
(Hi)8= (fli)r=0, and that Mj=kMf0 where 

MI0=cIH0/eL (20) 

is the thermal equilibrium magnetization of the I spins 
at the lattice temperature dL. With h^>HL, we switch 
on (Hi)i, and slowly reduce ha to zero. We then end 
up, according to Eq. (16), with 

(Mr) = iMi0-
(Hi)i 

[(^xV+tfL2]1 '2 
(21) 

Note that if we were to change (Hi)i slowly, (Mi) 
would follow (Hi)i in accord with Eq. (21). 

B. Analysis of the Experimental Procedure 

We now turn to an analysis of our experiment. We 
shall assume throughout that spin-lattice relaxation 
can be neglected during the times of the experiment. 
Spin-lattice processes can be included readily, but one 
must be careful in so doing to include the sort of 
transverse Overhauser effects described by Bloembergen 
and Sorokin.6 

We begin by the demagnetization process. This 
brings (Mr) down along the x axis, its magnitude being 
given by Eq. (21). Let us call this magnetization 
(Mi);. During this process, since (Hi)s is zero, 3Czs 
commutes exactly with the rest of the Hamiltonian. So, 
likewise, does yshSz. Therefore, (Ms) remains un
affected, and points along the static laboratory field 
Ho. The rest of 3C' is at a common temperature Bi which 
we can compute from Eqs. (16b) and (21). 

6i==CI(H1)I/(MI (22) 

This temperature is, of course, very much lower than 
the lattice temperature 6L-

We now turn on (Hi)s suddenly. In such a rapid 
process, the state of the system does not change. The 
dipolar energy and the Zeeman energy of the / spins are 
therefore unchanged. The 5-spin Zeeman energy Es 

Es=-(M8)-QEL*tt)8, 
= 0 

(23) 

since (Ms) and (Heff)s are perpendicular. The total 
energy of the system Ei is therefore 

Ei= — 
C/CCffiV+ffL2] 

(24) 

After a sufficiently long time, the S-spins Zeeman 
energy comes into thermal equilibrium with the rest 
of the system at a common final temperature $/. The 

final energy Ef is then 

CIl(Hl)I"+HL'-]+Cs(H1)s
2 

Ef= . (25) 

But since the total system is isolated and its Hamil
tonian independent of time, its energy cannot change. 
Therefore, 

Ei=E}. (26) 
This gives us that 

Cr[(Hi)x2+Hz,2] 

where 

6, dKHjf+Hfi+CsiHx)** 

1 

C s(#!) s
2 

(27) 

CrlKffxV+ffz,2] 
(28) 

In the process the magnitude of (Mj) drops from its 
initial value (Mj)i to a final value (Mi)/ which, in 
view of Curie's law, is 

(M i)//(Mj),= 1/(1+6). (29) 

We now suddenly turn off (Hi)s. Once again the system 
immediately after the change has the same wave 
function as it did just before. The expectation value 
of 3Czi and of the dipolar energies is thus unchanged, 
but that of 3Czs is zero since (Heu)s=0. The total 
energy E/ is therefore 

£ / = -
Cr[(gi)iH-gL»] 

(30) 

Immediately after the turn-off of (Hi)s, (Ms) is 
nonzero. Therefore, we see that we do not have thermal 
equilibrium. If we wait for a sufficiently long time, the 
entire system will come to a common temperature 0//. 
In the process, (Ms) decays to zero. This is an irre
versible decay. We shall in fact calculate the entropy 
increase below. 

When the system has reached the final temperature 
6ffj the energy is Eff. Using Eq. (16a) we have 

£ / / = - C I [ ( # I ) I 2 + # L 2 ] / 0 / / . (31) 

But Ef/=E/ since the spin system is isolated from the 
outside world and has a Hamiltonian independent of 
time. Therefore, using Eqs. (30) and (31) 

df=eff. (32) 

Using Curie's law we see that following the turn-off of 
(Hi)s, (Mi) does not change. 

For one complete on-off cycle, therefore, we can argue 
that (Mi) is reduced by the factor l / ( l+€) . 

We can repeat the argument for another on-off cycle. 
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The magnetization Mi(N) after N cycles is thus given 
in terms of its value Mj(0) prior to the first cycle by 

J f rW/ i f i (0 ) = [ l / ( l + € ) ] ^ . (33) 

When e<<Cl, as in our experiments, we can write this as 

Jfj(iV)/lfi(0) = e~^% (34) 

where e is given by Eq. (28). Equation (34) is our 
principal theoretical result and its verification, the 
chief objective of our experiments, is discussed in 
Sec. V. 

As pointed out in Sec. I, double resonance is possible 
even when (H^I^HL* Experimentally we accomplish 
this by performing adiabatic reduction of (Hi) after 
Mi has been brought along (Hi)r in the rotating frame. 
After (i?i)je^0, Mj^O from Curie's law, however, we 
have retained the order in the J-spin system, the order 
now being with respect to the local field.10 (Ht)s is now 
cycled on and off N times. After the Nth. cycle, (H\)i 
is adiabatically returned to its original value. The 
resulting Mi is then observed by rapidly turning off 
(Hi) i and observing the free induction decay. 

The analysis for the case when (HI)I<^HL is es
sentially the same as given above; however, now, the 
term CI(HI)I2/6 no longer appears in Eqs. (24) and (25), 
and e reduces to 

e^Cs^Os'/dHLK 

C. Energy and Entropy 

It is interesting to follow the changes in energy and 
entropy of the spins that take place during the double 
resonance. The essence of the experiment is the heating 
of the / spins brought about by the contact with the 
hot S spins. There is a net flow of energy into the system 
as a result of work done on the S spins. The destruction 
of the I magnetization corresponds to an irreversible 
loss of order, that is, an entropy increase. The energy 
of the system is, of course, the expectation value of the 
Hamiltonian of Eq. (12). Basic theorems of quantum 
(and classical) mechanics tell us that the total energy 
remains constant as long as 5C does not explicitly 
depend on time. Rearrangements of energy within the 
total system even when 3C is independent of time we 
identify as a heat flow within the system. Changes of 
the total energy due to variation of an external param
eter we call work on or by the spin system. 

We can follow the cycle by considering work and heat 
transfer in the rotating frame. Consider one complete 
cycle of (Hi)s on and off. We start by turning on (Hi)s 
suddenly. Bearing in mind that the S Zeeman energy is 

{3CZ8)=-(Msy(Ei)s, (35) 

and that during the sudden turn-on the dipolar energy 
does not have time to change, we see that it takes no 
work to turn on (Hi)s since (Ms) is initially zero. The 
establishment of the 5 magnetization causes (3Cz#) to 

go from zero to a negative value. That is, there is a 
heat flow from the 5-spin Zeeman reservoir to the rest 
of the spin system. That this is the direction of heat 
flow is reasonable since the initial zero (Ms) in the 
presence of a nonzero (Hi)s can be viewed as saying 
that 3Czs has an infinite temperature. Associated with 
this heat flow between systems at different temperature 
there must be an entropy increase. 

Following establishment of (Ms), we turn off (Hi)s. 
Using Eq. (35) we can see that we must do positive 
work on 3Czs in the process. [Note that during turn-on 
or turn-off, which takes place suddenly, there is no time 
for heat flow, so that we can compute the work done 
solely from the changes in (3Czs) given by Eq. (35).] 
Following turn-off, (Ms) decays irreversibly to zero. 
Again there must be an entropy increase associated 
with the irreversibility. We are now ready to repeat 
the cycle. Note that we have done a net amount of 
work on the spin system, and that there has been an 
irreversible loss in order. 

Had we turned on (Hi)s in the next cycle before 
(Ms) had been able to decay, the S spins would have 
done positive work back on us. In fact, had (Ms) not 
decayed at all, we would have gotten back as much work 
as we put in when we turned off (Hi)s. We would not 
then have done any net work in a cycle. Moreover, 
apart from the effects at the original turn-on, there 
would have been no irreversible loss in magnetization 
of either spin system. We must allow a sufficiently 
long time for the irreversible features to occur. 

The entropy a of the system, can be calculated 
starting from the basic equation15 

E+kS InZ 
a= ., (36) 

e 

where Z is the partition function. Making use of the 
high-temperature approximation, we can evaluate Eq. 
(36) to get 

r 1 Tr5C2"| 
oQ*k\ In(Trl) , (37) 

L 2ft202 Trl J 

where Trl means the total number of states, and equals 

Tr l= (27+1)^/(25+1)^. (^) 

Evaluating Tr3C2, as in Eq. (16a), gives (with ^o=0) 

<r=kZNi ln(2i+l)+iVs ln(25+l)] 

CiZ(HdJ*+HL*-]+Cs(HM 
. (39) 

202 

[Note that Eq. (21), describing the adiabatic de
magnetization, follows from use of Eq. (16b), Curie's 

15 R. C. Tolman, in Principles of Statistical Mechanics (Oxford 
University Press, Oxford, 1938). 
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FIG 1. Block diagram of the double resonance apparatus. 

law, together with the requirement that the entropy 
given by Eq. (39) remain constant.] Since we have 
worked out the temperature at each part of the cycle, 
we can use Eq. (39), together with the approximation 
that e is small, to find that in one complete cycle 
starting at temperature 0 there is a total increase in 
entropy 07—vi of 

<Tf-<Ti = . (40) 
e2 

Half of the increase occurs following the turn-on, the 
other half following the turn-off of (Hi)s* We note that 
the larger (Hi)s, the larger the change of entropy per 
cycle. Since the existence of M j is a sign of order, we see 
that a large (Hi)s leads to a large destruction of Mj , 
as was, in fact, already expressed by Eq. (34). 

IV. EXPERIMENTAL DETAILS 

A. Apparatus 

The experiment was performed using the pulsed 
double resonance spectrometer shown in block diagram 
form in Fig. 1. The rf head was a miniature crossed-coil 
configuration which fit inside a set of liquid helium 
dewars. The coil configuration is shown in Fig. 2. 
Most of the data taken in the experiment were a t 
1.5°K. The individual components of the spectrometer 

are of standard design and are described in detail 
elsewhere.16 However, a few features of the apparatus 
which were useful for the present experiment will be 
described. 

The two transmitter coils were tuned to 15.00 and 
5.679 Mc/sec, respectively, the resonant frequencies 
of the Li7 and Li6 nuclei in a field of 9062 G. The 
coupling between the final power amplifiers and the 
transmitter tank circuits was accomplished by a link, 
the input end of which was the "pi section" output 
network of the power stage. The rf voltage, and thus 
the Hi field, were varied in magnitude by changing the 
loading capacitor which formed the final leg of the 
"pi section." This arrangement provided a simple 
means of varying the Hi fields and had very little effect 
on the tuned circuits. The rf voltages were monitored on 
an oscilloscope by means of capacitive dividers across 
the transmitter tank circuits. 

In experiments in the completely demagnetized 
state, (HI)^HL, the (Hi) 7 field was reduced to a small 
value by pulsing the grid bias of the preamplifier which 
drives the final power stage. This reduced the (#1)7 
field to a few milligauss, and since HL— 1.2 G in metallic 
lithium, the criterion that (HI)T<^HL was well satisfied. 

The receiver coil was tuned to 15.00 Mc/sec and 
connected directly to the grid of the input stage of the 

16 F. M. Lurie, thesis, University of Illinois, 1963 (unpublished). 
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FIELD PULSING COILS 
(WOUND ON NITROGEN 

DEWAR) 

FIG. 2. Schematic diagram of the coil geometry at the sample. 

receiver. The receiver had a gain of 104 and was linear 
over the range of signals encountered. Since signal to 
noise was not a problem at 1.5 °K, a box-car integrator 
was not needed, so that phase incoherent detection was 
used. The free induction decay of the Li7 nuclei was 
observed photographically on an oscilloscope which 
was dc coupled to the detector and triggered by the 
turn-off of the (#1)7 pulse. In order to achieve a linear 
detection, an rf reference of several volts amplitude but 
differing slightly in frequency from the 15.00 Mc/sec 
was fed to the detector. The oscilloscope photographs 
therefore show the beat between the reference and the 
signal. Use of a reference which is incoherent with the 
signal makes the instrumental adjustments sub
stantially simpler than they are when a phase coherent 
reference is employed, yet preserves the enormous 
advantage of linearity of the detection process which 
is only possible when the signal voltage is small com
pared to the reference. 

B. Calibration of the Hx Fields 

In order to test the thermodynamic theory presented 
in the previous section, the magnitudes of the Hi fields 
must be accurately known. In particular, this required 
field calibrations at room temperature, 78 °K, and 
1.5°K and at the frequencies used during the experi
ment. At room temperature and 1.5 °K, calibrations 
were made by applying a 180° pulse, or mr pulse where 
n is an integer, to a narrow resonance line and detecting 
the null in the free induction decay. A narrow line, i.e., 

dH<^Hi, is required for precision in the Hi calibration. 
At room temperature the 15-Mc/sec field was cali
brated using the motionally narrowed5 resonance of 
Li7 nuclei in the metal particles and the protons in the 
mineral oil surrounding the lithium particles. The 
5.679-Mc/sec field was calibrated on the protons in the 
mineral oil. At 1.5°K the 180° pulse method was used 
on both transmitter coils with a small quantity of 
liquid He3 which was introduced into the center of the 
lithium sample. These calibrations showed that the 
field calibrations were essentially independent of 
temperature and all calibration runs gave the same 
results to within 3%. In addition, some of the cali
brations were performed with the second field being 
pulsed on. No detectable effect due to the second rf 
field was found. 

The homogeneity of the Hi fields is believed to be 
fairly good. Inhomogeneity in the Hi's can arise from 
two causes (a) effects due to the coil geometry and (b) 
the existence of the skin effect in the metal particles. A 
rough estimate of the geometrical effect over the sample 
volume could be made from the calibration data on 
the liquid He3. This indicated that the Hi field at one 
end of the receiver coil was nine-tenths the value at the 
center. Since the lithium sample length was less than 
one-half the receiver coil length, the actual variation 
of Hi over the Li samples was probably much smaller 
than the above estimate. Further evidence for this is 
that no indications of Hi inhomogeneities were observed 
in the calibrations using Li7 and protons at room 
temperature. Therefore, we conclude that spatial Hi 
variations were small and probably negligible compared 
to skin depth effects which are discussed below. We 
discuss the broadening of Hi due to the skin effect in 
Sec. B below. 

The 15-.Mc/sec field was also calibrated using the Li7 

nuclei at 78 °K and 1.5 °K by means of the adiabatic 
demagnetization process described in the previous 
section. The procedure was to pulse the static field off 
resonance, turn on the (#1)7 at the peak of the field 
pulse, and then return the static field adiabatically to 
the resonance value. (#1)7 is then pulsed off and the free 
induction decay photographed. This process is repeated 
for successively smaller values of (#1)7. If the resulting 
Li7 magnetization is plotted as a function of (#1)7, the 
experimental points should fall on a curve given by 
Eq. (21), 

M7=M0(Hi)7/ZHL*+ (#i)7
2]1/2. 

Since HL can be calculated theoretically, a curve given 
by Eq. (21) is a calibration of (#1)7 provided Mo is 
known. At the lf7=0.707ikfo point, (HI)7=HL which 
calibrates (#1)7 in terms of the voltage across the 
transmitter tank circuit which corresponds to HL- A 
typical result for this type of calibration at 78°K is 
shown in Fig. 3. The solid curve is calculated from Eq. 
(21). Its horizontal scale is given by the theoretical 
HL (1.20 G) and the calibration of (#1)7 by the 180° 
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FIG. 3. Li7 magnetization as a function of (#1)7 (in volts) for an 
adiabatic demagnetization in the rotating reference frame at 78°K. 
The solid curve is calculated from Eq. (21). The horizontal scale 
is determined by the theoretical value of HL (1.20 G) and the 
calibration of (#1)7 in terms of voltage by the 180° pulse method. 
The vertical scale was chosen to fit the data at the value of 

pulse. Its vertical scale is chosen to fit the data at the 
point (Hi)7=HL. The agreement between the calcu
lated curve and the experimental points indicates that 
the two methods of calibration are consistent and 
provides a graphic demonstration of the adiabatic 
demagnetization process. 

C. Samples 

The lithium samples were composed of fine metal 
particles dispersed in mineral oil. The samples were 
made from 99.5% pure lithium ingot obtained from the 
Lithium Corporation of America. Pieces of the ingot 
were heated in mineral oil to 200°C, about 20°C above 
the melting point of lithium, and then agitated with a 
high-speed stirrer. The temperature was then lowered 
slowly with the stirrer running. All sample preparation 
was done under a dry helium atmosphere to reduce 
oxidation of the metal. Examination under a microscope 
revealed the metal particles to be generally spherical 
with an average radius of 3X10~3 cm. For pure metal, 
this radius is comparable to the classical skin depth at 
78°K, and at 1.5 °K the skin depth is undoubtedly much 
smaller than the particle size. However, for pure 
lithium at room temperature, the mean free path of 
electrons is about 100 A. This is not greatly different 
from the contribution of the nearly 1% impurity, so 
that we do not expect the skin depth to vary greatly 
with temperature. There is good evidence that the rf 
fields were penetrating well into the lithium particles 
since the change in tuning of the receiver tank circuit 
was very small between room temperature and 1.5 °K. 
We note, however, that the double resonance experiment 
involves two rf fields at different frequencies and, since 
the relative magnitudes of the field are important, our 
results are probably fairly sensitive to skin-depth 
effects. The experimental results to be presented in 

the next section do indicate that small skin-depth 
effects are present in our data. Resonance data indi
cating that these effects are indeed small will be 
described in the following section. 

V. EXPERIMENTAL RESULTS 

In this section the experimental results will be 
presented and compared with the thermodynamic 
theory developed in Sec. III. The experimental results 
will be compared with calculations using Eqs. (28) and 
(34) and the calibrated values of the Hi fields. In the 
computations the value of HL used will be the contri
bution from the interaction of Li7 spins between them
selves. The contributions to HL from the terms in
volving the Li6 spins are negligible being only about 2% 
of the total value of HL* In this approximation we find 
the value of HL

2 to be 1.43 G2.17 

A. Experiments with {H^>HL 

The results described in this paragraph were all 
obtained at 1.5°K with (#1)7 about twice HL. In Fig. 4 
experimental values of InMV are plotted as a function 
of CffiV for N=22, *on=kff=l, 2, and 10 msec and 
0ffi)7=2.31 G. For this value of (#1)7, (#i)6=6.1 G 
satisfies the Hahn condition. The solid line is calculated 
from Eqs. (28) and (34) and indicates the final value of 
the Li7 magnetization corresponding to the establish
ment of a common spin temperature between the Li7 

and Li6 spin systems. The results in Fig. 4 show that 
the two spin systems do achieve a common spin 
temperature over a range of values about the Hahn 
condition. Note that as the time during which mixing 
can occur is increased, the range of values of (HI)Q over 
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FIG. 4. lnAf7 versus (#i)6
2 at 1.5°K for #=22, *on = /off=l, 2, 

and 10 msec, (#i)7 = 2.31 G. For this value of (#1)7, (#i)6 = 6.1 G 
satisfies the Hahn condition. The solid line is calculated from 
Eqs. (28) and (34) 

17 H. S. Gutowsky and B. R. McGarvey, T. Chem. Phys. 20, 
1472(1952). 
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which a common spin temperature is reached increases 
as would be expected. Note also that there is a range of 
(#1)6 about the minimum in the curves over which the 
mixing is relatively insensitive to the value of (#1)6. 

In Fig. 5 experimental values of lnM7 are plotted as a 
function of the number of mixing pulses N, with e 
constant. These data were taken with (#1)7= 2.14 G, 
(i7i)6=5.4 G which approximately satisfy the Hahn 
condition. The solid line is again calculated from Eqs. 
(28) and (34) and agrees well with the data for the lower 
range of N. The deviation of the experimental points 
from a straight line for the large values of N is caused 
by skin effects as discussed in Sec. IV. (Note added in 
proof. The curvature may also result from the fact that 
HL depends on the orientation of H0 with respect to the 
crystal axes. Since the sample is a powder, a distribution 

40 80 120 160 200 
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FIG. 5. lnM7 versus N at 1.5°K. (#i)7 = 2.14 G, (#i)6 = 5.4 G, 
nearly satisfying the Hahn condition. ton=t0{{ = 4: msec. The solid 
line is calculated using Eqs. (28) and (34). 

in e results.) Experimental evidence for this is given in 
Fig. 6 where the same kind of measurement was made, 
but with the (#i)e: (#1)7 ratio set to correspond to the 
region of the minima in the curves shown in Fig. 4. In 
this case the data should be less sensitive to small varia
tions in the ratio of the Hi fields. This is indeed indicated 
in Fig. 6 where only the last point deviates significantly 
from a straight line. In both Figs. 5 and 6 the data were 
taken with t0n=t0H = 4 msec. Thus in these experiments 
more than 97% of the Li7 magnetization has been de
stroyed in 1.25 sec in one case, and in 0.8 sec in the other. 

B. Experiments with (Hi)7<£HL 

In this paragraph results of experiments in the 
completely demagnetized state will be presented. All 
the data to be presented were obtained at 1.5°K and 
in this case Eqs. (28) and (34) apply with (H1)7=0. In 
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FIG. 6. lnM7 versus N at 1.5°K. (#07 = 2.30 G, (#06 = 6.9 G, 
4n=A)ff=4 msec. The ratio of (HI)Q to (#1)7 corresponds to the 
minimum in Fig. 4. The solid straight line is drawn to show the 
exponential dependence. This graph shows that the curvature in 
Fig. 5 results from slight inhomogeneities in the Hi's. 

Fig. 7 InMr is plotted as a function of (HI)Q2 with 
iV=25, and £on=^off=2, 5, and 8 msec. The solid line is 
calculated from Eqs. (28) and (34). In this case the 
data show that the rate of mixing decreases as (#1)6 is 
increased. This is a result of the competition between 
fast mixing at low (#1)6 and the increase in heat 
capacity for the Li6 spin system for larger (HI)Q. 
Notice that the curves have a very broad minimum 
which indicates that in the demagnetized state the 
setting of (Hi)e is not critical over a wide range. This 
fact could be of considerable importance in searching 
for an unknown resonance. 

The results of an experiment in which (HI)G is kept 
constant and N varied are shown in Fig. 8. In this case 
the data were taken with (#1)6=6.4 G and ton=toii=6 
msec. This value of (Hi)e corresponds to a point in the 

H, (GAUSS) 

FIG. 7. lnM7 versus (#,)6
2 at 1.5°K for N = 25, (Fi)7 = 0, 

^on=£off=2, 5, and 8 msec. The solid line is calculated using Eqs. 
(28) and (34). This figure demonstrates that double resonance 
works in the completely demagnetized state. Note the broad 
minima. 
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FIG. 8. lnif? versus N at 
1.5°K in the completely de
magnetized state [ (Hi) i = 0]. 
(#i)6=6.4 G, £on=kff=6 msec. 
The value of (Hi)§ corresponds 
to the broad minimum in Fig. 7. 
The solid line is drawn to indi
cate the exponential dependence. 
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broad minimum of the curves in Fig. 7. In this case the 
solid line has been simply drawn through the data to 
indicate the exponential dependence. We do not have a 
theoretical value for its slope since we know that for 
this value of (#1)5 a common spin temperature is not 
established. 

C. Discussion 

The results presented in the previous paragraphs 
demonstrate the validity of the thermodynamic 
approach to the double resonance process. However, 
our data do not demonstrate fully the inherently 
attractive feature of the technique, namely, the in
creased sensitivity which is possible. We can obtain an 
estimate of the possible sensitivity from our data in the 
following way. In Figs. 5, 6, and 8 more than 95% of 
the Li7 magnetization was destroyed in about one 
second. Since the Li7 T\ at 1.5 °K is 30 sec, it would have 
been possible to take as long as 20 sec to destroy the 
Li7 magnetization if this had been necessary. Roughly, 
this means that approximately 20 times fewer dilute 
spins could have been observed with the same signal 
to noise. Using the oscilloscope display, the signal to 
noise was good enough to permit one to gain another 
factor of 4 in the minimum detectable effect. A further 
increase in sensitivity could be achieved by employing 
gated integrator techniques and presenting the data 
on a chart recorder. On the other hand, as the number 
of dilute spins is decreased, the time required for mixing 
between the two spin systems may become limited by 
spin diffusion as has been pointed out by Hartmann 
and Hahn. Taking these factors into account, one 
estimates that approximately 10~5 dilute spins per 
abundant spin could be observed using the double 
resonance method without too great difficulty. 

The data in Fig. 5 indicate that the double resonance 

technique can be used to determine the number of 
dilute spins in the material being studied. If the Hi 
fields are calibrated and the nuclear spins and gyro-
magnetic ratios are known, the slope of a plot of InM 
as a function of N, the number of mixing pulses, 
determines the ratio of the dilute to the abundant 
spins. 

The good quantitative agreement between the data 
and theory not only demonstrates the validity of the 
thermodynamic approach to the double resonance 
process, but provides further justification of Redfield's 
hypothesis of a spin temperature in the rotating refer
ence frame. In addition, the theory extends Redfield's 
ideas to the case of a common spin temperature in two 
reference frames simultaneously rotating at different 
frequencies, and rigorously includes the effect of the 
local field. By including the local field, we have demon
strated that double resonance can be performed with 
alternating fields which are comparable in magnitude 
with the local field and that the technique works equally 
well when the abundant spin system is in the completely 
demagnetized state. 

APPENDIX 

In this appendix we will present a calculation of the 
cross-section time Tig. Cross relaxation between spin 
systems has been discussed by several authors.18 Our 
discussion will closely follow Schumacher's treatment as 
extended by Bloembergen et aL In fact, we will take over 
Schumacher's results, but neglect the spin-lattice re
laxation terms which he included in his treatment. 

The starting point for the development of a model is 
the Hamiltonian of Eq. (12), 

W'^Wzi+Xza+KdiP+Xdsf+KdiiP. (Al) 

Following Schumacher we make two assumptions: 
(1) We assume the coupling between 3Czi and 3Cdii° 

and between 3Czs and 3Cdss° is much stronger than the 
interactions which proceed via 3Q,dis0> Consequently the 
I system, described by 5Ci=5Czr+5Cdii°, can be charac
terized by a spin temperature 0j, and the S system, 
described by 3Cs=3£zs+3£dss°, can be characterized 
by a spin temperature 6s- (It is undoubtedly incorrect 
that 3CZs and 3QdssQ couple more strongly than 3Cdis°, 
but the $s assumption may still hold.) 

(2) We assume that the interaction between 3Cj and 
3Cs due to 3Cdis° is a weak perturbation so that the 
rate of change of level populations in each system can 
be described by rate equations involving transition 
probabilities. 

Letting Rsi and Ris denote, respectively, the rate of 
energy flow from the S to the I system, and from the / 

18 A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958); 
R. T. Schumacher, ibid. 112, 837 (1958); N. Bloembergen, S. 
Shapiro, P. S. Pershan, and J. O. Artman, ibid. 114, 445 
(1959); P. S. Pershan, ibid. 117, 109 (1960); B. N. Provotorov, 
Zh. Eksperim. i Teor. Fiz. 42, 882 (1962) [translation: Soviet 
Phys.—JETP 15, 611 (1962)]. 
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to the S system, we can write down rate equations for 
the cross-relaxation process in terms of the inverse spin 
temperatures, 

drll r l 1 

where 

IdiJ L6i 6sJ 

UsJ Us diJ 

dt\ 

dr\ 

M 
(A2) 

These coupled rate equations define the R's, and are a 
special case of Schumacher's results. Using assumptions 
(1) and (2) above, Eqs. (A2) can be rigorously derived. 
The derivation will not be given here since it is discussed 
in detail by Schumacher who shows that Rsi and Ris are 
given by 

Znr,msWnr,m8(Er-Es¥ 
Rsi= _ _ , , (A3) 

2 Tr[3Cs2>r 

Ris=-
Wm jnr.ms *' ms,nr r(En—Emy 

2 Tr[3Cj2>s 
(A4) 

where Wm8tnr is the probability per unit time for a 
transition between states | m) and | n) of the / system 
and states | s) and | r) of the S system, En, Em, Er, and 
E8 are, respectively, the energies of the states | n)y \ m)% 

\r), and \s), (3Ci\m)=Em\m)), and rji and TJS are, 
respectively, the total number of spin states of the I- and 
S-spin systems. Using the principles of detailed balanc
ing and energy conservation, we find 

RSI TrBfCz2]^ 
= - — — . (AS)-

RI8 Tr[5C s
2>j 

In terms of the above model, equilibrium is. described 
by 01=03. Thus we can combine Eqs. (A2) to obtain a 
single equation involving the difference in the inverse 
spin temperatures, 

drl l - i r l i n 
__ \=-ZRai+Riai . (A6) 
dLBi 6 s J L0i $s J 

A solution to this equation will be an exponential 
function with a time constant given by 

1/ Tis=Rsi~\- Ris • (A7) 

Using Curie's Law we then find that after a single 
mixing pulse, during which (Hi)s is turned on for a 
time /on, the magnetization M of the / spins is given by 

M= ZMi-Mfy-*~iT'*+Mf, (A8) 

where Mi is the initial magnetization and Mf is the 
/ magnetization at equilibrium. Equation (A8) can be 
combined with the results of Sec. I I of the text to give 
the magnetization of the / spins after N mixing pulses 
for e<<Cl as 

M/Mi=exp{-Ne[l-e-t°»lT™']} > (A9) 

1 r Tr[3C*2>ri 

TISL Trpez^J 

2-t ** nr,ms 

-. (A10) 
Trpez2]*? a J 2 T r [ 5 C / > r 

The transition probability per unit time Wnr,ms will 
be calculated using first order, time-dependent pertur
bation theory. In performing this calculation we assume 
that the /-spin "absorption line" has a Gaussian shape 
and the 5-spin line shape is a delta function. 

To calculate Wnr,ma for the case where (HI)I>HL we 
start with the Hamiltonian 

W=Wi+Ws+Wdis°, (AH) 
where 

3C,= - 7 r ( t f i ) i £ J * p 
V 

V I J , (A12) 

Ks=-ysH(H1)s'ESsci, 

3 

3£dIS°= S BjlJzjSzk, 

[1 — 3 COS^a"! 

—~*—J' 
[1—3 cos20 jh~\ 

• 
Tik3 J 

(A13) 

(A14) 

(A15) 

(A16) 

Note that the term SCass0 has been dropped in Eq. 
(A13) since we assume the S-spin line shape to be a 
delta function. From first order, time-dependent 
perturbation theory we have 

2TT 
Ww.n*=—\(n9r\WditP\m9s)\* 

h 
Xd(En+Er-Em-E8). (A17) 

The quantity to be calculated IS 2^nrms v* nr,ms (Er-E,y. 
Expanding the matrix element in Eq. (A17) we find 

£ Wnr,me(Er-E,y 
nrma 

2TT 
= - Y ^ 2 ( # I V E Bj&w 

ft jj'kk' 
nrms 

X (n | Izk | m)(m | /,*' | n)(r \Syj\ s)(s \ Syj> \ r) 

Xd(En-Em+Er-Es). (A18) 

We now define a function gw (co) by the equation 

£y/(«)= 22 {n\IZk\m){mIzk'\n) 
nmkkf 

XBikBrk'd(En-Em-ho)), (A19) 

where we shall soon set |feo| = \ET—Ea\ = \ys(Bi)s\' 
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Were the Apq's zero, the only nonvanishing matrix 
elements of IZk would join states Kli—yh{H^i apart 
in energy. For nonzero A pq we assume, therefore, 

gjjio)) = C iy[erC«-o/) , /«t f+^r («+o/)»/«i»] ? ( A 2 Q ) 

where Cyy reflects the strength of the line and wi its 
width. This is a useful assumption since C/y and o?i2 can 
be calculated exactly by the method of moments. 

To evaluate Cyy, Eqs. (A19) and (A20) are inte
grated over co and equated. This gives 

1 1 1(1+1) 
c . . , = ( 2 /+ l )* '£ J3y*B^ (A21) 

2 7T1/2C0ift 3 * 

To evaluate coi2 we do a second moment calculation, 
i.e., using Eqs. (A19) and (A20) we evaluate the 
integral 

J 0 

«*£//' (»)** = (°>2) / gJS' («) *" i 
J —O 

and equate the two results. 
Although 3Cdii° commutes with the Zeeman Hamil-

tonian in the laboratory frame, it does not commute 
with the Zeeman Hamiltonian in the rotating frame. 
In carrying out the second moment calculation in
volving Eq. (A20) it is important to use only the 
secular part of the truncated dipolar interaction 3Cdii°* 
The reason for keeping only the secular part of the 
truncated dipolar interaction in the second moment 
calculation is the same as in a moment calculation in 
the laboratory frame.14 The nonsecular terms correspond 
to weak absorption peaks at frequencies ± 0 / from the 
central absorption peak. If these satellite lines are 
included in a determination of the moments they give a 
contribution of the same magnitude as the contribution 
from the central peak although they have only minor 
influence on the cross-relaxation. Therefore, only the 
secular part of 3Cdii° will be retained. In|the*present 
case we want only that part of 3Cdii° which commutes 
with ^ p / j p . Denoting this by 3Cdii°° we find 

5Cdu
00= - i £ AP13IXPIxq-Ip-IJ. (A22) 

pq 

The integral using Eq. (A20) gives 

r r «i2n r 

I gjj,(o)coido>= QiH-— / ga>(co)do>. (A23) 

Evaluating the same quantity using Eq. (A19) gives f 
J 0 

1 
uPgjj' (u)d(t=—£ BjkBj'w 

XTrC[5Ci°,/,fc][5Ci0,/,^]], 

where 3Ci0=3£zi+3Cdii00. Evaluation of "the^trace is 

straightforward and gives 

/ gw (w)[co2—12j2]Jco= — 
J —00 

1 l r / ( J + l ) - f 

ft24L 3 
(27+1)' 

X £ SBitBrUh,* (A24) 
kp 

Equating Eqs. (A23) and (A24) we obtain 

Ajcp"! 

»i*=f/(/+i) E LJ' (A25) 

where the summation goes over the I spins. From the 
definition of Apq we have 

where 

a l l v 

[ 1 - 3 cos20PJ2 

Tph* 

and NT is the total number of spins per unit volume. 
Since the expression for the contribution of like spins 
to the second moment is14 

Ni 
(A2co)ri=|7z4W(/+l)—#, 

NT 
we obtain 

Wl
2= (5/18)(A2co)jr. 

Thus we obtain 

Z Wnt>ms(Er-Eay 

(A26) 

lie 
•—Ts2^2(ffi)s2 L C«'Ce-<M-Q/ ) ! ! /w l2+e-(w+Q ' ) ! 1 / '0 ,2 ] 

•fl jj'ra 

X(r\SVJ\s)(s\Syj\r). 

601 
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L i 6 H, (GAUSS) 

FIG. 9. \xlM^ versus (#i)e2 at 1.5°K. The solid curves are calcu
lated using Eqs. (A9) and (A29). The solid straight line and data 
points are the same as in Fig. 4. 
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Now (r\Syj\s) joins states differing in energy by 
fiys(Hi) soffits* Thus one or the other of the ex
ponentials is picked out which gives 

£ wnrtms(ET-E8y 
firms 

= — 7 s * (Hi) ie~ Ws-toiW°n 

X£Tr[C3ySw-Swv]- (A27) 

Working out the trace and substituting into Eq. (A3) 
we find 

4T,s2r7r(A2w)^i1/2 

Rai= 
3 7i2L 10 J 

e-Ws-QDVuiz^ (A28) 

where 
a>i*=(5/18)<A\*>ri, 

0 I = 7 I ( ^ I ) I . 

Using the relationship in Eq. (A5) we obtain for the 
cross-relaxation time 

Tia L NL 

NSS(S+1)JSKHI)S2 

/(/+i)7/2c(ffi)i2+KA2^)": 

4 ys
2r*(A>2«>hnw 

5] 
4 ysTir{Azo))in1' 

3 7i2L 10 J 
e-Ws-QiWotf, (A29) 

The calculation of the cross-relaxation time in the 
completely demagnetized state is essentially the same 
as that outlined above. The major change with 

5 10! 
6 7 

L i 6 H.(GAUSS) 

FIG. 10. InMi versus (#i)e2 at 1.5°K in the completely de
magnetized state. The solid curves are calculated using Eqs. 
(A9) and (A29). The solid straight line and data points are the 
same as in Fig. 7. 

(HI)I<^HL is that the Hamiltonian for the /-spin 
system is given by the dipolar term only. Thus 

" W — 2 L-i Apq\_31ZplZq l p * l g j . (A30) 

Note that 3Cs and 3Cdis° are unchanged and are still 
given by Eqs. (A 13) and (A14). Since the /-system 
Hamiltonian is given by the dipolar Hamiltonian, the 
/-spin "absorption line" is now assumed to be a single 
Gaussian function centered at the origin. The calcu
lation of the second moment of this line will involve the 
full dipolar Hamiltonian of Eq. (A30). The calculation 
proceeds in the same manner as outlined above. The 
result for the case where (Hi)i<£HL is found to be 

TIS L 1+ 
Nsys2S(S+l)(H1)s" 

i W / ( / + l ) K A 2 # > i i -

2S2 

X - — [ ( A ^ ) / / ] 1 ^ - ^ 2 ' " 1 2 , (A31) 
3 P 

where now coi2= (4/9)(A2co)n. 
It is important to note that Eqs. (A30) and (A31) are 

calculated assuming that the frequencies of the Hi's 
are constant and equal to the resonant frequencies of 
the / and 5 spins, and the ratio (Hi)s: (#i)z is varied. 
A calculation of the mixing time for fixed magnitudes of 
the Hi fields and variation of the frequency of (Hi) 8 
has been carried out by Hartmann and Hahn.8 These 
authors perform the calculation using an expansion of 
the density matrix but make essentially the same 
assumptions (spin temperature and Gaussian line 
shape) which we have used in setting up our model. 
Equations (A30) and (A31) can be combined with 
Eq. (A9) and compared with the experimental data 
of Figs. 4 and 7. The results are shown in Figs. 9 and 10. 
In both cases we see that the experimental mixing takes 
place faster than the mixing calculated on the basis of 
our simple model. 

In particular, some preliminary results on the 
measurement of the cross-relaxation time indicate that 
more than one relaxation rate is involved in the mixing 
whereas the simple model we have used to calculate the 
cross-relaxation assumes a single relaxation rate 
between the two spin systems. Thus, although the 
calculated curves do tend to reflect the general form 
of the experimental results, it is not surprising that 
the agreement between theory and experiment is only 
qualitative. 


